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Outline

• convex optimization

– ℓ1 heuristic for sparsity
– some (simple) examples

• distributed convex optimization

– consensus optimization
– arbitrary scale data fitting
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Optimization

• form mathematical model of real (design, analysis, synthesis,
estimation, control, . . . ) problem

• use computational algorithm to solve

• standard formulation:

minimize f(x)
subject to x ∈ C

x is the (decision) variable; f is the objective; C is the constraint set

• other formulations: multi-criterion optimization, trade-off analysis, . . .
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The good news

• everything1 is an optimization problem

1
i.e., much of engineering design and analysis, data analysis
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The bad news

• you can’t (really) solve most optimization problems

• even simple looking problems are often intractable
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Except for some special cases

• least-squares and variations (e.g., optimal control, filtering)

• linear and quadratic programming

• convex optimization

well, OK, there are some other special cases
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Convex optimization problem

minimize f(x)
subject to x ∈ C

• C is convex (closed under averaging):

x, y ∈ C, θ ∈ [0, 1] =⇒ θx+ (1− θ)y ∈ C

• f is convex (graph of f curves upward):

θ ∈ [0, 1] =⇒ f(θx+ (1− θ)y) ≤ θf(x) + (1− θ)f(y)

• not always easy to recognize/validate convexity
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Convex optimization

• (no analytical solutions, but) can solve convex optimization problems
extremely well (in theory and practice)

– get global solutions, with optimality certificate
– problems with 103–105 variables, constraints solved by generic
methods on generic processor

– (much) larger problems solved by iterative methods and/or on
multiple processors

– differentiability plays a minor role

• beautiful (and fairly complete) theory
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Applications of convex optimization

• convex problems come up much more often than was once thought

• many applications recently discovered in

– control
– combinatorial optimization
– signal & image processing
– communications, networking
– analog and digital circuit design
– statistics, machine learning, data modeling
– finance
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How convex optimization is used in applications

• direct/exact solution of problem

– e.g., ML logistic model fitting, linearly constrained regression

• approximation/relaxation

– e.g., compressed sensing, SVM, fault estimation

• subroutine

– e.g., nonnegative matrix factorization (solve sequence of QPs)
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How convex optimization problems are solved

• medium size problems easily solved by generic interior-point methods

• parser-solvers make prototyping fast & easy

• for large scale problems: custom codes for specific problems

• for arbitrary scale: distributed optimization

NASA Conference on Intelligent Data Understanding, October 2010 10



Parser/solvers for convex optimization

• specify convex problem in natural form

– declare optimization variables
– form convex objective and constraints using a specific set of atoms
and calculus rules

• problem is convex-by-construction

• easy to parse, automatically transform to standard form, solve, and
transform back

• implemented using object-oriented methods and/or compiler-compilers

• huge gain in productivity (rapid prototyping, teaching, research ideas)
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Example (cvx)

convex problem, with variable x ∈ Rn:

minimize ‖Ax− b‖2 + λ‖x‖1

subject to Fx ≤ g

cvx specification:

cvx begin

variable x(n) % declare vector variable

minimize (norm(A*x-b,2) + lambda*norm(x,1))

subject to F*x <= g

cvx end
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when cvx processes this specification, it

• verifies convexity of problem

• generates equivalent IPM-compatible problem

• solves it using SDPT3 or SeDuMi

• transforms solution back to original problem

the cvx code is easy to read, understand, modify
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ℓ1 heuristic for sparsity

• adding λ‖z‖1 to objective, or adding constraint ‖z‖1 ≤ γ

– preserves convexity (hence, tractability) of problem
– tends to give a solution with z sparse (few nonzero entries)

• an old idea (Claerbout early 1980s, . . . )

• basis of many well known methods: compressed sensing, basis pursuit,
LASSO, SVM, total variation de-noising, . . .

• some new theorerical results (Donoho, Candes, . . . ):
special cases in which more can be said than ‘tends to’
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Parsimonious model fitting

• parameter fitting problem:

– x ∈ Rn: model parameters to be chosen
– y ∈ Rm: set of measurements, observations
– f(x, y): implausibility of x, given observations y
– goal: find sparse x (parsimonious model) with f(x, y) small

• ℓ1-regularized method: choose x to minimize f(x, y) + λ‖x‖1

– parameter λ ≥ 0 trades off fit and sparsity
– in many interesting cases, f is convex in x, so problem is convex
– often works really well

• gives method for modeling with n ≫ m (!!)
(i.e., way more parameters than data samples)
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Support vector machine

• data (xi, yi), i = 1, . . . ,m

– xi ∈ Rn feature vectors;
– yi ∈ {−1, 1} Boolean outcomes

• find a ∈ Rn, b ∈ R with

– yi(a
Txi − b) ≥ 1 for most xi

– ‖a‖2 small (2/‖a‖2 is width of separating slab |aTz − b| ≤ 1)

• SVM: minimize ‖a‖2 + λ
∑m

i=1

(

1− yi(a
Txi − b)

)

+

– convex problem, can be converted to QP
– λ trades off slab width and (roughly) number of misclassifications
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aTz − b = 0 (solid); |aTz − b| = 1 (dashed)
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Robust Kalman filtering

• estimate state of a linear dynamical system driven by IID noise

• sensor measurements have occasional outliers (failures, jamming, . . . )

• model: xt+1 = Axt + wt, yt = Cxt + vt + zt

– wt ∼ N (0,W ), vt ∼ N (0, V )
– zt is sparse; represents outliers, failures, . . .

• (steady-state) Kalman filter (for case zt = 0):

– time update: x̂t+1|t = Ax̂t|t

– measurement update: x̂t|t = x̂t|t−1 + L(yt − Cx̂t|t−1)

• we’ll replace measurement update with robust version to handle outliers
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Measurement update via optimization

• standard KF: x̂t|t is solution of quadratic problem

minimize vTV −1v + (x− x̂t|t−1)
TΣ−1(x− x̂t|t−1)

subject to yt = Cx+ v

with variables x, v (simple analytic solution)

• robust KF: choose x̂t|t as solution of convex problem

minimize vTV −1v + (x− x̂t|t−1)
TΣ−1(x− x̂t|t−1) + λ‖z‖1

subject to yt = Cx+ v + z

with variables x, v, z (requires solving a QP)
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Example

• 50 states, 15 measurements

• with prob. 5%, measurement components replaced with (yt)i = (vt)i

• so, get a flawed measurement (i.e., zt 6= 0) every other step (or so)
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State estimation error

‖x− x̂t|t‖2 for KF (red); robust KF (blue); KF with z = 0 (gray)

0.5
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Outline

• convex optimization

– ℓ1 heuristic for sparsity
– some (simple) examples

• distributed convex optimization

– consensus optimization
– arbitrary scale data fitting
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Distributed convex optimization

• variables, constraints, data distributed across multiple processors

• processors solve whole problem by iteratively

– solving subproblems
– exchanging (relatively small) messages

• (some) methods:

– primal, dual decomposition (1950s)
– proximal decomposition (1980s; trace to 1960s)
– Peaceman-Rachford, Douglas-Rachford splitting (1960s; for PDEs)
– alternating directions method of multipliers (1976–now)
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Alternating direction method of multipliers

• ADMM problem form (with f , g convex)

minimize f(x) + g(z)
subject to Ax+Bz = c

– two sets of variables, with separable objective

• Lρ(x, z, y) = f(x) + g(z) + yT (Ax+Bz − c) + (ρ/2)‖Ax+Bz − c‖22

• ADMM:

xk+1 := argminxLρ(x, z
k, yk) // x-minimization

zk+1 := argminz Lρ(x
k+1, z, yk) // z-minimization

yk+1 := yk + ρ(Axk+1 +Bzk+1 − c) // dual update
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Lasso

• lasso problem:

minimize (1/2)‖Ax− b‖22 + λ‖x‖1

• ADMM form:

minimize (1/2)‖Ax− b‖22 + λ‖z‖1
subject to x− z = 0

• ADMM:

xk+1 := (ATA+ ρI)−1(AT b+ ρzk − yk)

zk+1 := Sλ/ρ(x
k+1 + yk/ρ)

yk+1 := yk + ρ(xk+1 − zk+1)
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Lasso example

• example with dense A ∈ R1500×5000

(1500 measurements; 5000 regressors)

• computation times

factorization (same as ridge regression) 1.3s

subsequent ADMM iterations 0.03s

lasso solve (about 50 ADMM iterations) 2.9s

full regularization path (30 λ’s) 4.4s

(competitive with specialized, highly tuned solvers)
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Consensus optimization

• want to solve problem with N objective terms

minimize
∑N

i=1 fi(x)

– e.g., fi is the loss function for ith block of training data

• ADMM form:
minimize

∑N
i=1 fi(xi)

subject to xi − z = 0

– xi are local variables
– z is the global variable
– xi − z = 0 are consistency or consensus constraints
– can add regularization using a g(z) term
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Consensus optimization via ADMM

• Lρ(x, z, y) =
∑N

i=1

(

fi(xi) + yTi (xi − z) + (ρ/2)‖xi − z‖22
)

• ADMM:

xk+1
i := argmin

xi

(

fi(xi) + ykTi (xi − zk) + (ρ/2)‖xi − zk‖22
)

zk+1 :=
1

N

N
∑

i=1

(

xk+1
i + (1/ρ)yki

)

yk+1
i := yki + ρ(xk+1

i − zk+1)

• with regularization, averaging in z update is followed by proxg,ρ
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Consensus optimization via ADMM

• using
∑N

i=1 y
k
i = 0, algorithm simplifies to

xk+1
i := argmin

xi

(

fi(xi) + ykTi (xi − xk) + (ρ/2)‖xi − xk‖22
)

yk+1
i := yki + ρ(xk+1

i − xk+1)

where xk = (1/N)
∑N

i=1 x
k
i

• in each iteration

– gather xk
i and average to get xk

– scatter the average xk to processors
– update yki locally (in each processor, in parallel)
– update xi locally
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Statistical interpretation

• fi is negative log-likelihood for parameter x given ith data block

• xk+1
i is MAP estimate under prior N (xk + (1/ρ)yki , ρI)

• prior mean is previous iteration’s consensus shifted by ‘price’ of
processor i disagreeing with previous consensus

• processors only need to support a Gaussian MAP method

– type or number of data in each block not relevant
– consensus protocol yields global maximum-likelihood estimate
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Consensus classification

• data (examples) (ai, bi), i = 1, . . . , N , ai ∈ Rn, bi ∈ {−1,+1}

• linear classifier sign(aTw + v), with weight w, offset v

• margin for ith example is bi(a
T
i w + v); want margin to be positive

• loss for ith example is l(bi(a
T
i w + v))

– l is loss function (hinge, logistic, probit, exponential, . . . )

• choose w, v to minimize 1
N

∑N
i=1 l(bi(a

T
i w + v)) + r(w)

– r(w) is regularization term (ℓ2, ℓ1, . . . )

• split data and use ADMM consensus to solve
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Consensus SVM example

• hinge loss l(u) = (1− u)+ with ℓ2 regularization

• baby problem with n = 2, N = 400 to illustrate

• examples split into 20 groups, in worst possible way:
each group contains only positive or negative examples
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Iteration 1
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Iteration 5
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Iteration 40
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ℓ1 regularized logistic regression example

• logistic loss, l(u) = log (1 + e−u), with ℓ1 regularization

• n = 104, N = 106, sparse with ≈ 10 nonzero regressors in each example

• split data into 100 blocks with N = 104 examples each

• xi updates involve ℓ2 regularized logistic loss, done with stock L-BFGS,
default parameters

• time for all xi updates is maximum over xi update times
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Distributed logistic regression example
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Fleet-wide input-output model

yit = Axi
t + vit, i = 1, . . . , N, t = 1, . . . , T

• i indexes unit in fleet of N units

• t is time period

• xi
t ∈ Rn is (measured) input

• yit ∈ Rm is (measured) output

• Ai
t ∈ Rm×n is unit- and time-varying (input-output) model

• vit is noise

NASA Conference on Intelligent Data Understanding, October 2010 36



Anomaly detection

• most units exhibit nominal behavior: Ai
t ≈ Anom

• anomalous unit: Ai
t ≈ Aanom 6= Anom

• anomalous change at time t0: A
i
t ≈

{

Anom t ≤ t0

Aanom t > t0

• goal: find anomalous units, changes, from measured fleet-wide data

(xi
t, y

i
t), i = 1, . . . , N, t = 1, . . . , T
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Regularized regression fit

minimize
∑

i,t

‖yit −Ai
tx

i
t‖

2
2 // squared residual

+λ
∑

i,t

‖Ai
t −Anom‖ // sum of norms (offset)

+µ
∑

i,t

‖Ai
t+1 −Ai

t‖ // sum of norms (jumps)

• λ, µ: positive parameters

• number of variables: mn(NT + 1)

• split with x ∼ Ai
t, z ∼ Anom; do consensus ADMM

• x-update separates across units
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Small example

• m = n = 2, T = 100, N = 20

• one anomalous unit, one anomalous change
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Larger example

• m = 6, n = 9, T = 1000, N = 1000

– 54 million variables

• each unit’s data handled on separate processor

– subproblem solved in ≈ 10 seconds, exploiting (banded) structure

• with 30 ADMM iterations, takes a few minutes

• these are (good) estimates, from our experience so far
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Arbitrary-scale distributed statistical estimation

• scaling: scale algorithms to datasets of arbitrary size

• cloud computing: run algorithms in the cloud

– each node handles a modest convex problem
– decentralized data storage

• coordination: ADMM is meta-algorithm that coordinates existing
solvers to solve problems of arbitrary size

(c.f. designing specialized large-scale algorithms for specific problems)

• rough draft at Boyd website, papers section
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